

Ethylene Acrylic Elastomer - Technical Data

Description

Vamac® Ultra LS is a high viscosity version of Vamac® GLS, offering improved performance in injection molding processes compared to Vamac® GLS to reduce the frequency of mold cleaning.

Product Properties

Property	Target Values	Method
Mooney Viscosity ML1+4 at 100 °C	33	ASTM D1646
Volatiles	≤0.6 wt %	Internal DuPont Test
Form (25kg nominal bale size)	51.6 x 34.4 x 13.6 cm	Visual Inspection
Color	Clear to light yellow translucent	Visual Inspection

Major Performance Properties and Applications

The high viscosity of Vamac® Ultra LS compared to standard AEM grades results in better mixing, provided mixing conditions are adapted to requirements of polymers with higher viscosity. Increased green strength of compounds helps to avoid collapse during extrusion processes. The optimized polymer structure ensures gains in physical properties, resulting in improved performance of rubber parts such as seals, dampers and extruded hoses.

The best physical properties of Vamac® Ultra LS are obtained in rubber parts having a hardness range between 50 and 90 Shore A. Extensions to the lower hardness range may be more easily achieved with Vamac® Ultra grades than standard AEM using appropriate compounding.

Among AEM, Vamac® Ultra LS offers the best compression set and fast cure with low oil swell useful such applications as oil seals, oil cooler hose, and PCV hose.

Handling Precautions

Because Vamac® ethylene-acrylic elastomers contain small amounts of residual methyl acrylate monomer, adequate ventilation should be provided during storage and processing to prevent worker exposure to methyl acrylate vapor. Additional information may be found in the Vamac® product Safety Data Sheet (SDS), and DuPont™ bulletin, *Safe Handling and Processing of Vamac*®.

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Mixing

Vamac® Ultra LS has higher viscosity than Vamac® GLS which permits better and faster dispersion of fillers and other compounding ingredients. Low hardness compounds or formulations with high plasticizer levels benefit most from this property. The higher viscosity of Ultra LS however results in an onset of incorporation of powdery ingredients at higher temperature than for lower viscosity Vamac® grades.

It is therefore recommended to ensure that the total time at mixing temperatures between 80 and 100°C is identical as for standard grades that processing conditions are adjusted, for example by reducing rotor speed. If the compound is discharged in relation to mass temperature at identical mixing conditions, the higher viscosity of the Ultra grades would lead to higher shear forces and faster temperature increase, followed by earlier discharge of the compound, and shorter time for dispersion of fillers and other ingredients. Bad dispersion would necessarily lead to poorer compound properties and mould fouling.

Compounding and Physical Properties

Physical properties of the Ultra grades are known to be significantly superior to their lower viscosity reference grades at same methyl acrylate level. Both families are fully compatible to each other and can be blended at every ratio required. Ultra LS requires lower levels of diamine curative than Vamac® GLS for the same compression set levels, whilst at the same time achieving highest Elongation at Break.

Property losses, known from a replacement of formerly used coagent DOTG with alternative accelerators, can be compensated by use of Vamac® Ultra grades.

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Table 1 – DOTG Replacement Study: Vamac® GLS and Vamac® Ultra LS

Compound No.	1	2	3	4	5
Vamac® GLS	100	100	50	50	
Vamac® Ultra LS			50	50	100
Naugard® 445	2	2	2	2	2
Armeen® 18D	0.5	0.5	0.5	0.5	0.5
Vanfre® VAM	1	1	1	1	1
Stearic acid	1.5	1.5	1.5	1.5	1.5
Spheron® SO A N 550	60	60	60	60	60
Rhenosin® W 759	10	10	10	10	10
Diak™ No 1	1.75	1.75	1.5	1.25	1.25
Vulcofac® ACT 55		2	2	4	2
Ekaland® DOTG C	4				
Mooney Viscosity ML 1+4, 100°C, MU	37	40	54	51	64
Mooney Scorch MS 121°C (Ts5), min	9.1	7.7	8.2	7.1	9.5
MDR, 0.5°arc, 12 minutes at 180°C					
ML, dNm	0.37	0.45	0.61	0.62	0.77
MH, dNm	14.46	14.33	14.62	13.73	14.68
Ts2, min	0.85	0.81	0.79	0.66	0.79
T10, min	0.72	0.69	0.67	0.56	0.67
T50, min	2.03	2.01	1.93	1.37	1.94
T90, min	6.34	6.62	6.22	4.54	6.01

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Table 1 (continued) – DOTG Replacement Study: Vamac® GLS and Vamac® Ultra LS

Compound No.	1	2	3	4	5
Original Properties (type 2) at 23°C					
Cure Time, 5 min at 180°C / Post-Cured, 4 hr at 175°C	<u> </u>				
Hardness Shore A (1s), pts	73	76	76	75	74
Tensile Strength, MPa	14.9	17.1	17.5	15.9	17.9
Elongation at Break, %	259	211	234	251	290
50% Modulus, MPa	2.4	3.3	3.2	2.9	2.8
100% Modulus, MPa	5.7	7.8	7.4	6.4	6.1
Tear Die C at 23°C, N/mm	26.7	23.0	24.8	26.5	27.0
Comp Set, 70 h at 150°C (ISO815), %	21	28	26	27	24
Comp Set, 94 h at 150°C (VW PV3307), %	49	57	71	77	49
Comp Set, 22 h at 150°C, 2h cooled in clamps, %	22	28	28	32	29

Compounding Variations for Faster Cure

Vamac® Ultra grades are cleaner in injection molding and do not tend to stick to metallic surfaces of mixing or moulding equipment as much as lower viscosity AEM polymers. This can allow further optimization and variations in compounding, such as reduction of process aids. Possible advantages would be a reduced tendency to get flow lines on injection molded parts, or further acceleration of cure speed and reduction of cure cycle time, or optimization of Compression Set. Some compounding variations with 60 Shore A general purpose sealing compounds are shown in Table 2.

Further optimization of Compression Set can be achieved by using lower volatile plasticizers, as shown in Table 2, compounds No. 6 and 7. By optimizing compound formulations, cure times can be reduced by about 40 to 50%, as can be seen when comparing compound No. 6 and 11. At the same time, scorch times are reduced as well, but compound flow of 60 Shore A compound with 15 phr of plasticizer is typically sufficient to fill even molds with complex shape. Compression Set values before post-cure are reduced significantly as well. For some parts like molded air ducts, the values obtained without process aids and a more heat resistant plasticizer may be adequate even without post-cure. Outstanding Compression set values may be obtained in some cases after a very short post-cure cycle, which can be of help when post-cure oven capacities are limited.

dupont.com

DuPont``m, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Table 2 – Vamac® Ultra LS Compounding Variations for Faster Cure and improved Comp Set

ig variatio	113 101 1 431	ici Cuic ai	ia improv	ca comp	300	
6	7	8	9	10	11	
100	100	100	100	100	100	
2	2	2	2	2	2	
1	1					
0.5	0.5	0.5				
2	2	2	2			
20	20	20	20	20	20	
45	45	45	45	45	45	
15						
	15	15	15	15	15	
1.3	1.3	1.3	1.3	1.3	1.3	
3	3	3	3	3		
					3	
30.8	33.4	35.7	36.6	44.1	46.3	
0.28	0.29	0.31	0.34	0.4	0.37	
9.56	10.41	10.51	11.14	11.65	11.1	
0.97	0.93	0.87	0.75	0.72	0.63	
1.85	1.88	1.74	1.48	1.45	1.19	
6.42	6.62	6.28	5.41	5.45	3.58	
o Post-Cure	2					
56	54	50	46	50	45	
86	83	30	79	78	76	
ost-Cure 30	min at 175	<u>°C</u>				
30	27	25	25	24	25	
71	64	65	65	64	62	
58	58	58	59	59	59	
14.1	15.3	15.0	14.9	15.4	14.1	
368	386	370	338	330	330	
2.5	2.4	2.6	2.9	3.0	3.1	
	6 100 2 1 0.5 2 20 45 15 1.3 3 30.8 0.28 9.56 0.97 1.85 6.42 o Post-Cure 56 86 ost-Cure 30 71 58 14.1 368	6 7 100 100 2 2 1 1 1 0.5 0.5 2 2 20 20 45 45 15 15 15 1.3 1.3 3 3 3 30.8 33.4 0.28 0.29 9.56 10.41 0.97 0.93 1.85 1.88 6.42 6.62 0 Post-Cure 56 54 86 83 0 27 71 64 58 58 14.1 15.3 368 386	6 7 8 100 100 100 2 2 2 1 1 1 0.5 0.5 0.5 2 2 2 20 20 20 45 45 45 15 15 15 1.3 1.3 1.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6 7 8 9 100 100 100 100 2 2 2 2 1 1 0.5 0.5 0.5 2 2 2 2 2 20 20 20 20 20 45 45 45 45 15 15 15 15 15 15 1.3 1.3 1.3 1.3 3 30.8 33.4 35.7 36.6 0.28 0.29 0.31 0.34 0.34 9.56 10.41 10.51 11.14 0.97 0.93 0.87 0.75 1.85 1.88 1.74 1.48 6.42 6.62 6.28 5.41 0 Post-Cure 56 54 50 46 86 83 30 79 0 st-Cure 30 min at 175°C 30 27 25 25 71 64 65 <	6 7 8 9 10 100 100 100 100 100 100 2 2 2 2 2 2 2 1 1 1 0.5 0.5 0.5 2 2 2 2 2 20 20 20 20 20 20 20 45 45 45 45 45 45 15 15 15 15 15 15 1.3 1.3 1.3 1.3 1.3 1.3 3 3 3 3 3 3 30.8 33.4 35.7 36.6 44.1 0.28 0.29 0.31 0.34 0.4 9.56 10.41 10.51 11.14 11.65 0.97 0.93 0.87 0.75 0.72 1.85 1.88 1.74 1.48 1.45 6.42 6.62 6.28 5.41 5.45 o Post-Cure 56 54 50 46 50 86 83 30 79 78 ost-Cure 30 min at 175°C 30 27 25 25 24 71 64 65 65 64 58 58 58 59 59 14.1 15.3 15.0 14.9 15.4 368 386 370 338 330	6 7 8 9 10 11 100 100 100 100 100 100 2 2 2 2 2 2 1 1 0.5 0.5 0.5 2

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Heat Resistance

Vamac® Ultra LS combines excellent dry heat resistance at about 170 °C over a period of 1000 h (six weeks) with very good resistance to automotive lubricants. Peak temperatures of 200°C are possible without major property changes up to four days. Sealing applications typically require resistance to upper temperature of 150°C maximum, as automotive lubricants would not withstand higher temperatures.

At the same time, Tg of -25°C of Ultra LS provides very good low temperature flexibility. The low temperature properties may be further enhanced by addition of plasticizers. In comparison to standard Vamac® grades, the high viscosity of Ultra LS permits addition of more plasticizer, while still maintaining a compound viscosity that allows good filler dispersion and good processing.

Good compression set properties make Vamac® Ultra LS an excellent choice for sealing applications. Good resistance to Blow-By (hot air, acids, oil and petrol fumes), present in automotive crankcase venting systems and air ducts combined with increased dynamic resistance are additional attributes of Vamac® Ultra LS. The resistance to water-based acids and blow-by can be further improved by blending Ultra LS with Vamac® grades with lower methyl acrylate content, such as Vamac® Ultra IP.

Heat ageing performance at elevated temperature is shown in Table 3. Compression Set is partially influenced by loss of plasticizer, as can be seen from weight loss data.

Table 3 – Heat Ageing and Compression Set of Vamac® Ultra LS at 180 °C and 165 °C

Table 5 Treat right gains compression set of rainage of the 10	· • · · · · · ·	<u> </u>
Compound No.	12	13
Vamac® Ultra LS	100	100
Naugard® 445	2	2
Armeen® 18D PRILLS	0.5	0.5
Vanfre® VAM	0.5	0.5
Stearic acid	2	2
Spheron® SO A N 550	35	35
Nycoflex® ADB 30	10	
Edenol® T810T stabilized		10
Diak™ no 1	1.5	1.5
Vulcofac® ACT 55	2	2

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac[®] Ultra LS

Ethylene Acrylic Elastomer - Technical Data

Table 3 (continued) – Heat Ageing and Compression Set of Vamac® Ultra LS at 180 °C and 165 °C

Table 3 (continued) – Heat Ageing and Compression Set of Vamac®	Ultra LS at 18	<u>o Cand 16</u> 5
Compound No.	12	13
Original Properties (type 2) at 23°C		_
Compression Moulding 10 min at 180°C / Post-cure 4 hours at 175°C		
Hardness IRHD – (ISO 48, Method M /micro-test), pts	55	56
Tensile Strength, MPa	17.6	17.8
Elongation at Break, %	350	343
100% Modulus, MPa	2.78	2.80
C. set 72 h at 180°C, (ISO 815-1, Type A /13 mm moulded buttons), %	26	20
C. set 1028 h at 165°C (Type A), %	43	29
C. set 1028 h at 165°C (Type A in Total MA4 G06190, 5W30), %	32	23
Heat Ageing 168 hours at 180°C		
Hardness IRHD – (ISO 48, Method M /micro-test), pts	57	54
Delta Hardness (ISO 188), pts	2	-2
Tensile Strength, MPa	16.7	16.5
Delta Tensile Strength, %	-5	-7
Elongation at Break, %	369	368
Delta Elongation at Break, %	5	7
100% Modulus, MPa	3.0	2.8
Weight Change, %	-5.1	-3.0
Heat Ageing 1008 hours at 165°C		
Hardness IRHD – (ISO 48, Method M /micro-test), pts	68	62
Delta Hardness (ISO 188), pts	13	7
Tensile Strength, MPa	9.6	12.0
Delta Tensile Strength, %	-45	-32
Elongation at Break, %	177	257
Delta Elongation at Break, %	-49	-25
100% Modulus, MPa	4.7	3.4
Weight Change, %	-9.6	-6.5

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Long term sealing performance

In Compression Set and Compressive Stress Relaxation (CSR) tests, Vamac® Ultra grades have outperformed their respective standard Vamac® grades. Table 4 shows various Compression Set results of five different 60 Shore A compounds which differ from each other in polymer type, curative level and plasticizer content. Charts 1 to 3 show CSR results of these compounds in Engine Oil, in Automatic Transmission Fluid and in Air at 150°C. Tests were conducted according to ISO3384, Type B, with 6 mm high buttons on Shawbury-Wallace testing equipment for 504 hours.

Table 4 – Comparison of Compression Set: Vamac® Ultra IP and Vamac® Ultra LS

Table 4 – Comparison of Compression Set. Vallac® Offia in and Vallac® Offia LS						
Compound No.	14	15	16	17	18	
Vamac® Ultra IP	100					
Vamac® Ultra LS		100	100	100	100	
Regal® SRF N 772	50	50	50	40	30	
MT Thermax® Floform N 990	20	20	20	20	20	
Nycoflex® ADB 30	20	20	20	10		
Naugard® 445	2	2	2	2	2	
Stearic acid	1	1	1	1	1	
Armeen® 18D PRILLS	0.5	0.5	0.5	0.5	0.5	
Vanfre® VAM	1	1	1	1	1	
Rubber chem Diak™ no 1	1.3	1.75	1.3	1.3	1.3	
Vulcofac® ACT 55	3	3	3	3	3	
Original Properties (type 2) at 23°C Compression Moulding 10 min at 180°C / Post-cure 4 hrs at 175°C	<u>-</u>					
Hardness Shore A (1s), pts	60	63	61	61	63	
Tensile Strength, MPa	16.0	15.8	16.0	16.8	18.5	
Elongation at Break, %	363	313	346	352	356	
100% Modulus, MPa	2.7	3.4	2.9	2.8	3.2	
Tear Strength (type C- Crescent), kN/m	24.1	21.2	22.6	23.5	16.7	
Tg by DSC (ISO 22768), °C	-44	-40	-40	-33	-23	

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Table 4 (continued) – Comparison of Compression Set: Vamac® Ultra IP and Vamac® Ultra LS

Compound No.	14	15	16	17	18		
Compression Set							
Compression Moulding 10 min at 180°C / Post-cure 4 hrs at 175°	<u>C</u>						
Comp Set, VW 22 h at 150°C (VW PV 3307), %	52	39	43	41	38		
Comp Set, VW 94 h at 23°C (VW PV 3307), %	29	20	27	25	26		
Comp Set 70 h at 150°C (ISO 815-1, 6mm plied disks), %	26	24	26	22	18		
Comp Set 70 h at 150°C (ISO 815-1, 6mm moulded buttons), %	24	20	22	20	17		
Comp Set at 150°C (ISO-815-1, Type A, 13 mm buttons)							
70 h, %	16	14	15	13	12		
168 h, %	20	19	20	18	14		
504 h, %	28	29	28	25	23		
1008 h, %	34	37	34	33	30		
168 h in Castrol® SLX Longlife IV 0W-30, %	28	25	27	22	16		

Chart 1: CSR – ISO 3384 Type B, Shawbury-Wallace, Castrol® SLX Longlife IV 0W-30, 150°C

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Chart 2: CSR – ISO 3384 Type B, Shawbury-Wallace, Dexron® VI, 150°C

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

In Compressive Stress Relaxation (CSR) tests, Vamac® Ultra grades have not only outperformed their respective standard Vamac® grades, they also have increased the gap in long time sealing performance to polyacrylates. Chart 3 shows CSR test results of two 60 Shore A compounds without any plasticizer, based on both types of polymers.

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Ageing in different Automotive Fluids – Oils, Oil/Fuel Blends

Vamac® Ultra LS and Vamac® Ultra IP are both members of the higher viscosity Vamac® Ultra family. The difference between both polymers is the methyl acrylate (MA) content, which is significantly higher for Ultra LS. Whereas low MA content favours resistance to water-based fluids, high MA content provides better resistance to hydrocarbon-based fluids present in automotive engines. Compounds No. 14-18 shown in Table 4 have been aged in different fluids. Results after ageing in engine and transmission oils at 150°C and oil/fuel blends at room temperature are shown in Table 5. B-30 is a mixture of Diesel with 30% Biodiesel (RME), and E-85 is a blend of gasoline with 85% of Ethanol.

Table 5 – Fluid Ageing Results: Oils, Oil/Fuel Blends

Table 3 - Hulu Agellig Results. Oils, Oil/1	aci biciias				
Compound No.	14	15	16	17	18
Fluid Ageing 168 h at 150°C in IRM 903				·	·
Hardness Shore A (1s), pts	47	59	57	54	53
Delta Hardness, pts	-13	-4	-4	-7	-9
Tensile Strength, MPa	11.1	14.9	14.4	14.6	14.8
Delta Tensile Strength, %	-31	-6	-10	-13	-20
Elongation at Break, %	240	269	300	293	243
Delta Elongation at Break, %	-34	-14	-13	-17	-32
100% Modulus, MPa	3.4	4.0	3.4	3.5	3.5
Delta 100% Modulus, %	25	16	15	24	7
Volume Change, %	47	19	20	26	34
Weight Change, %	34	13	13	19	26
Fluid Ageing 168 h at 150°C in Castrol® SLX	Longlife IV	<u>, 0W-30</u>			
Hardness Shore A (1s), pts	63	73	71	67	61
Delta Hardness, pts	4	10	10	6	-2
Tensile Strength, MPa	15.2	15.2	15.1	16.4	16.2
Delta Tensile Strength, %	-5	-4	-5	-2	-13
Elongation at Break, %	328	276	309	313	301
Delta Elongation at Break, %	-10	-12	-11	-11	-15
100% Modulus, MPa	3.0	4.2	3.7	3.5	3.3
Delta 100% Modulus, %	12	24	26	27	3
Volume Change, %	-1	-6	-7	-2	5
Weight Change, %	-3	-6	-7	-3	3

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Vamac[®] Ultra LS

Ethylene Acrylic Elastomer - Technical Data

Table 5 (continued) – Fluid Ageing Results: Oils, Oil/Fuel Blends							
Compound No.	14	15	16	17	18		
Fluid Ageing 168 h at 150°C in Petro Canada	a Dexron® \	/I RDL 343	4				
Hardness Shore A (1s), pts	61	70	69	63	60		
Delta Hardness, pts	1	7	8	2	-3		
Tensile Strength, MPa	61	70	69	63	60		
Delta Tensile Strength, %	-4	-2	-6	-2	-12		
Elongation at Break, %	304	229	247	283	242		
Delta Elongation at Break, %	-16	-27	-29	-20	-32		
100% Modulus, MPa	3.4	5.1	4.7	4.2	3.9		
Delta 100% Modulus, %	25	49	60	50	21		
Volume Change, %	8	-1	-1	5	11		
Weight Change, %	4	-2	-2	2	8		
Fluid Ageing 168 h at 23°C in Mixture Castrol® SLX Longlife IV, 0W-30 / B-30 (90/10)							
Hardness Shore A (1s), pts	59	62	60	59	- 59		
Delta Hardness, pts	-1	-1	-1	-2	-4		
Tensile Strength, MPa	15.6	15.8	15.7	16.7	18.7		
Delta Tensile Strength, %	-3	1	-1	0	1		
Elongation at Break, %	372	318	360	362	352		
Delta Elongation at Break, %	2	2	4	3	-1		
100% Modulus, MPa	2.7	3.3	2.7	2.7	3.0		
Delta 100% Modulus, %	1	-4	-9	-3	-7		
Volume Change, %	1	0	0	0	0		
Weight Change, %	1	0	0	0	0		

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Table 5 (continued) - Fluid Ageing Results: Oils, Oil/Fuel Blends

Compound No.	14	15	16	17	18			
Fluid Ageing 168 h at 23°C in Mixture Castrol® SLX Longlife IV, 0W-30 / E-85 (90/10)								
Hardness Shore A (1s), pts	50	55	53	50	52			
Delta Hardness, pts	-10	-8	-8	-11	-11			
Tensile Strength, MPa	9.4	8.1	8.5	9.2	8.1			
Delta Tensile Strength, %	-41	-48	-47	-45	-56			
Elongation at Break, %	232	178	214	216	189			
Delta Elongation at Break, %	-36	-43	-38	-39	-47			
100% Modulus, MPa	2.8	3.5	2.9	3.0	3.1			
Delta 100% Modulus, %	3	3	0	7	-3			
Volume Change, %	24	22	22	25	29			
Weight Change, %	15	13	13	16	19			

Ageing in Fuels

It is generally not recommended to use AEM in contact to liquid gasoline, as volume swell and permeation are very high. Contact to gasoline fumes however can be handled by Vamac® polymers depending on concentration. AEM compounds are not destroyed in gasoline, as physical properties after an appropriate redrying step are nearly identical to original properties for compounds without plasticiser.

Compounds including plasticizer show weight loss after the re-drying step, which shows that the plasticizer is principally extracted by the fuel during immersion. Contact to Diesel fuel results in moderate swell of high MA Vamac® polymers like Ultra LS. Table 6 shows results after immersion in fuel. Compounds are identical to those shown in Table 4.

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

	_			
Table	6 - R	Ageing	ın	Fuels

14	15	16	17	18		
Fluid Ageing 168 hours at 23°C in ASTM Fuel C or ISO Liquid C						
38	45	42	42	44		
-22	-18	-19	-19	-19		
4.4	5.3	5.0	4.9	5.1		
-72	-66	-69	-71	-73		
113	113	117	113	112		
-69	-64	-66	-68	-69		
3.8	4.5	3.7	4.1	4.3		
40	31	25	48	35		
107	83	84	97	112		
68	51	51	61	73		
or ISO Liqu	id C					
= =				63		
				1		
				18.4		
				-1		
396	331	372	360	338		
9	6	7	2	-5		
	2.0	2.4	2.2	2 2		
3.1	3.9	3.4	3.2	3.0		
3.1 14	3.9 13	3.4 15	3.2 14	3.0 -6		
	or ISO Liqu 38 -22 4.4 -72 113 -69 3.8 40 107 68 or ISO Liqu 71 11 17.3 8	38 45 -22 -18 4.4 5.3 -72 -66 113 113 -69 -64 3.8 4.5 40 31 107 83 68 51 or ISO Liquid C 71 73 11 10 17.3 17.7 8 12 396 331	or ISO Liquid C 38 45 42 -22 -18 -19 4.4 5.3 5.0 -72 -66 -69 113 113 117 -69 -64 -66 3.8 4.5 3.7 40 31 25 107 83 84 68 51 51 or ISO Liquid C 71 73 72 11 10 11 17.3 17.7 17.2 8 12 7 396 331 372	or ISO Liquid C 38 45 42 42 -22 -18 -19 -19 4.4 5.3 5.0 4.9 -72 -66 -69 -71 113 113 117 113 -69 -64 -66 -68 3.8 4.5 3.7 4.1 40 31 25 48 107 83 84 97 68 51 51 61 or ISO Liquid C 71 73 72 67 11 10 11 6 17.3 17.7 17.2 18.8 8 12 7 12 396 331 372 360		

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Table 6 (continued) - Ageing in Fuels

rable 6 (continued) – Ageing in Fuels						
Compound No.	14	15	16	17	18	
Fluid Ageing 48 hours at 23°C in DIN FAM B or ISO Liquid 2						
Hardness Shore A (1s), pts	48	53	50	50	50	
Delta Hardness, pts	-12	-10	-11	-11	-13	
Tensile Strength, MPa	4.0	4.0	4.5	4.1	3.9	
Delta Tensile Strength, %	-75	-75	-72	-76	-79	
Elongation at Break, %	93	80	94	87	76	
Delta Elongation at Break, %	-74	-74	-73	-75	-79	
100% Modulus, MPa	-	-	-	-	-	
Delta 100% Modulus, %	-	-	-	-	-	
Volume Change, %	159	134	150	154	176	
Weight Change, %	101	84	94	99	114	
FI : I.A. : 40 I		_				
Fluid Ageing 48 hours at 23°C in DIN FAM B or IS	SO Liquid A	<u>2</u>				
After re-drying 22h @ 80°C				60	60	
Hardness Shore A (1s), pts	71	72	73	68	63	
Delta Hardness, pts	12	9	12	7	1	
Tensile Strength, MPa	18.0	18.5	18.1	17.8	17.4	
Delta Tensile Strength, %	13	18	13	6	-6	
Elongation at Break, %	387	334	362	332	311	
Delta Elongation at Break, %	7	7	5	-6	-13	
100% Modulus, MPa	3.2	4.0	3.5	3.2	3.2	
Delta 100% Modulus, %	16	16	19	16	0	
Volume Change, %	-16	-15	-16	-11	-4	
Weight Change, %	-14	-12	-13	-9	-4	

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Table 6 (continued) – Ageing in Fuels

Compound No.	14	15	16	17	18	
Fluid Ageing 168 hours at 23°C in Conventional Diesel (from a Gas Station)						
Hardness Shore A (1s), pts	50	56	54	52	53	
Delta Hardness, pts	-10	-7	-7	-9	-10	
Tensile Strength, MPa	10.3	12.1	12.5	12.6	12.0	
Delta Tensile Strength, %	-36	-23	-22	-25	-35	
Elongation at Break, %	246	247	290	274	252	
Delta Elongation at Break, %	-32	-21	-16	-22	-29	
100% Modulus, MPa	2.7	3.2	3.0	3.3	2.8	
Delta 100% Modulus, %	1	-5	3	17	-14	
Volume Change, %	27	13	13	17	20	
Weight Change, %	17	8	7	11	14	

Ageing in Blow-By and EGR Condensates

AEM has been successfully used in applications which are in contact to blow-by such as positive crankcase ventilation hoses. Blow-by varies a lot depending on engine type and driving conditions, and includes fuel, engine oil and acid condensates. Exhaust gas recirculation (EGR) increases the amount of acids present in engines. Vamac® with its high ethylene monomer content, combined with highly polar MA ester monomer, offers a good combination of resistance to hydrocarbon fluids as well as to water-based acids. Compounds 14 to 18 of Table 5 have been tested in two different Blow-By condensates as defined in specification BMW GS 97018, 2010-11, and results are shown in Table 8. The tests were made with lab autoclaves that have been filled to 50% of their volume. The slabs have been hung into the liquid phase prior to ageing.

Table 7 – Condensates According to BMW GS 97018, 2010-11

Condensate 1 (fuel/oil)	Weight %	Condensate 2 (water/acid)	Weight %
Naphthalene	1	Formaldehyde-10%	1
FAM-A (DIN51604-1)	88	Deionized water	89.7
Oil Lubrizol® OS206304	10	HNO3 (65%)	0.18
Formaldehyde-10%	1	Formic Acid (98-100%)	0.06
		Acetic Acid (96%)	0.06
		Ethanol	9

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Vamac[®] Ultra LS

Ethylene Acrylic Elastomer - Technical Data

Table 8 – Results after Ageing in BMW Condensates

Table 8 – Results after Ageing in BMW Conde	nsates					
Compound No.	14	15	16	17	18	
Fluid Ageing 70 h at 120°C in BMW Condensate 1 (fuel/oil condensate)						
Liquid Phase: Before re-drying						
Hardness Shore A (1s), pts	43	47	44	45	47	
Delta Hardness, pts	-17	-16	-17	-16	-16	
Tensile Strength, MPa	4.3	4.9	4.1	4.3	4.3	
Delta Tensile Strength, %	-73	-69	-74	-74	-77	
Elongation at Break, %	107	119	110	116	114	
Delta Elongation at Break, %	-71	-62	-68	-67	-68	
100% Modulus, MPa	3.7	4.1	3.6	3.5	3.7	
Delta 100% Modulus, %	37	20	23	25	17	
Volume Change, %	136	72	113	88	102	
Weight Change, %	84	45	68	56	67	
Fluid Ageing 70 h at 120°C in BMW Condensate 1	l (fuel/oil c	<u>ondensat</u>	<u>e)</u>			
Liquid Phase: After re-drying 22 h @ 80°C						
Hardness Shore A (1s), pts	63	68	65	63	60	
Delta Hardness, pts	3	5	4	2	-3	
Tensile Strength, MPa	15.2	15.7	15.3	16.9	17.1	
Delta Tensile Strength, %	-5	-1	-4	1	-8	
Elongation at Break, %	393	349	372	376	337	
Delta Elongation at Break, %	8	12	7	7	-5	
100% Modulus, MPa	2.9	3.5	3.0	3.0	3.0	
Delta 100% Modulus, %	6	4	3	8	-6	
Volume Change, %	-9	-9	-11	-6	0	
Weight Change, %	-9	-8	-10	-6	-1	

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Table 8 (continued) – Results after Ageing in BMW Condensates

Table 8 (continued) – Results after Ageing in BMW Condensates					
14	15	16	17	18	
(acid cond	densate)				
61	63	62	59	57	
2	0	1	-2	-5	
15.3	15.0	14.8	15.1	15.6	
-4	-5	-7	-10	-16	
393	347	387	358	361	
8	11	12	2	1	
2.6	3.2	2.9	2.8	2.7	
-4	-8	-2	0	-15	
2	1	1	6	12	
1	0	0	4	10	
(acid cond	<u>densate)</u>				
67	72	71	66	62	
7	9	10	5	-1	
16.2	16.2	16.1	17.5	18.2	
1	3				
ı	3	1	4	-2	
395	369	1 397	4 392	-2 366	
•		•			
395	369	397	392	366	
395 9	369 18	397 15	392 11	366 3	
395 9 3.1	369 18 3.6	397 15 3.2	392 11 3.1	366 3 3.0	
	14 (acid cond 2 15.3 -4 393 8 2.6 -4 2 1 (acid cond 67 7 16.2	14 15 (acid condensate) 61 63 2 0 15.3 15.0 -4 -5 393 347 8 11 2.6 3.2 -4 -8 2 1 1 0 (acid condensate) 67 72 7 9 16.2 16.2	14 15 16 (acid condensate) 61 63 62 2 0 1 15.3 15.0 14.8 -4 -5 -7 393 347 387 8 11 12 2.6 3.2 2.9 -4 -8 -2 2 1 1 1 0 0 (acid condensate) 67 72 71 7 9 10 16.2 16.2 16.1	14 15 16 17 (acid condensate) 61 63 62 59 2 0 1 -2 15.3 15.0 14.8 15.1 -4 -5 -7 -10 393 347 387 358 8 11 12 2 2.6 3.2 2.9 2.8 -4 -8 -2 0 2 1 1 6 1 0 0 4 (acid condensate) 67 72 71 66 7 9 10 5 16.2 16.2 16.1 17.5	

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Ageing in engine and transmission fluids

Volume Change in reference fluids is significant different to volume change in real automotive fluids. New automotive lubricants show lower swell compared to older engine oils, but contain more aggressive additive packages, which could contribute to loss of properties of higher methyl acrylate grades during fluid ageing.

Blends of medium and high methyl acrylate AEM polymers are an efficient solution for fluid ageing requirements. Table 9 shows results after immersion in engine oil and ATF with compounds made of Vamac® Ultra IP, Vamac® Ultra LS and a 50/50 blend.

Table 9 - Ageing in Engine Oil and Automatic Transmission Fluid

Compound No.	19	20	21
Vamac® Ultra IP	100	50	
Vamac® Ultra LS		50	100
Stearic acid	1	1	1
Naugard® 445	2	2	2
Armeen® 18D	0.5	0.5	0.5
Vanfre® VAM	0.5	0.5	0.5
Spheron® SOA (N 550)	50	50	50
Edenol®T810T stabilized	17	17	17
Diak™ No 1	1.5	1.5	1.8
Vulcofac® ACT 55	2	2	2

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates Copyright © 2019 DuPont de Nemours Inc.

Ethylene Acrylic Elastomer - Technical Data

Table 9 (continued) - Ageing in Engine Oil and Automatic Transmission Fluid

Table 9 (continued) - Ageing in Engine Oil and Automat	<u>ic transmissi</u>	on Fiuld	
Compound No.	19	20	21
Fluid Ageing 168 hours at 160°C in Lubrizol® OS 206304			
Hardness Shore A (1s), pts	62	66	71
Delta Hardness, pts	-3	0	3
Tensile Strength, MPa	15.2	15.8	16.3
Delta Tensile Strength, %	-9	-5	-7
Elongation at Break, %	277	291	239
Delta Elongation at Break, %	-11	-7	-21
25% Modulus, MPa	0.89	1.06	1.22
Delta 25% Modulus, %	-7	5	17
50% Modulus, MPa	1.7	2.02	2.24
Delta 50% Modulus, %	-1	10	17
100% Modulus, MPa	4.45	5.09	5.59
Delta 100% Modulus, %	4	12	16
Volume Change, %	11	6	1
Weight Change, %	7	3	0
Fluid Ageing 168 hours at 150°C in Petro Canada Dexron® V			
Hardness Shore A (1s), pts	64	68	73
Delta Hardness, pts	-1	2	5
Tensile Strength, MPa	17.6	17.6	18.0
Delta Tensile Strength, %	5	5	3
Elongation at Break, %	274	271	240
Delta Elongation at Break, %	-12	-14	-20
25% Modulus, MPa	0.98	1.17	1.51
Delta 25% Modulus, %	2	16	45
50% Modulus, MPa	1.9	2.12	2.81
Delta 50% Modulus, %	11	15	47
100% Modulus, MPa	5.1	5.21	7.02
Delta 100% Modulus, %	20	15	46
Volume Change, %	8.8	3.7	-0.5
Weight Change, %	5	1.5	-1.3

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.

Vamac[®] Ultra LS

Ethylene Acrylic Elastomer - Technical Data

Test methods used for this bulletin:

Test	Method
Rheology	
Mooney Viscosity	ISO 289-1:2005
Mooney Scorch	ISO 289-2:1994
MDR	ISO 6502:1999
Physical Properties	
Hardness	ISO 868:2003
Tensile Strength, Elongation, Modulus	ISO 37:1994
Compression Set	ISO 815:1991
Compression Set	Volkswagen PV3307
Compressive Stress Relaxation (CSR)	ISO 3384
Ageing in Air Oven	ISO 188:2007
Fluid Ageing	ISO 1817:2005
Tg by DSC	ISO 22768:2006
Tear Strength Die C	ISO 34-1:2004

dupont.com

DuPont™, the DuPont Oval Logo, [Product trademark] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc.